
報告番号 ※ 第 号

主　　論　　文　　の　　要　　旨　

論文題目

Studies on Modular Arithmetic Hardware Algorithms

for Public-key Cryptography （公開鍵暗号のための剰
余系演算のハードウェアアルゴリズムに関する研究）

氏　　名
Marcelo Emilio Kaihara

論　文　内　容　の　要　旨　
Public-key cryptography plays an important role in digital communication and

storage systems. Processing public-key cryptosystems requires huge amount of

computation, and, there is therefore, a great demand for developing dedicated

hardware to speed up the computations. In this thesis, we focus on modular

arithmetic hardware algorithms for public-key cryptosystem since these two oper-

ations are the computationally most intensive parts in encryption and decryption

processes.

After reviewing major algorithms for computing modular multiplication and

division in Chapter 2, we present in Chapter 3, a mixed radix-4/2 algorithm for

modular multiplication/division suitable for VLSI implementation. The hard-

ware algorithm is based on the Montgomery multiplication algorithm for mod-

ular multiplication and the Extended Binary GCD algorithm for modular divi-

sion. These two algorithms are combined into the proposed algorithm in order

to share hardware components. The new algorithm carries out both calculations

using simple operations such as shifts, additions and subtractions. The radix-2

signed-digit representation is used to avoid carry propagation in all additions and

subtractions. A modular multiplier/divider based on the algorithm performs an

n-bit modular multiplication/division in O(n) clock cycles where the length of

the clock cycle is constant and independent of n. A modular multiplier/divider

based on this hardware algorithm has a linear array structure with a bit-slice fea-

ture and can be implemented with much smaller hardware than that necessary

to implement both multiplier and divider separately.

Chapter 4 presents a hardware algorithm for modular multiplication/division



based on the extended Euclidean algorithm. This hardware algorithm performs

modular division, Montgomery multiplication, and ordinary modular multiplica-

tion. In order to calculate Montgomery multiplication, we propose a new compu-

tation method that consists of processing the multiplier from the most significant

digit first. The ordinary modular multiplication is based on the interleaved modu-

lar multiplication algorithm. Each of these three operations is carried out through

the iteration of simple operations such as shifts and additions/subtractions. In

order to avoid carry propagation in all additions and subtractions, the radix-2

signed-digit representation is employed. A modular multiplier/divider based on

the algorithm has a linear array structure with a bit-slice feature and carries out

n-bit modular multiplication/division in O(n) clock cycles, where the length of

the clock cycle is constant and independent of n. This multiplier/divider can

be implemented using a hardware amount only slightly larger than that of the

modular divider.

Chapter 5 presents a new fast method for calculating modular multiplication

named Bipartite Modular Multiplication. The calculation is performed using a

new representation of residue classes modulo M that enables the splitting of the

multiplier into two parts. These two parts are then processed separately, in par-

allel, potentially doubling the calculation speed. The upper part and the lower

part of the multiplier are processed using the interleaved modular multiplica-

tion algorithm and the Montgomery algorithm respectively. Conversions back

and forth between the original integer set and the new residue system can be

performed at speeds up to twice that of the Montgomery method without the

need for precomputed constants. This new method is suitable for both hardware

implementation; and software implementation in a multiprocessor environment.

A fast hardware algorithm for calculating modular multiplication based on

this method is presented at the end of this chapter. In this hardware algorithm,

the addition of the partial products to the intermediate accumulated product

is pipelined in order to reduce the critical path delay. A radix-4 version of the

hardware algorithm is then given and its hardware implementation is discussed.

Finally, in Chapter 6 we conclude that taking advantage of similarities and sym-

metries is a good technique for reducing hardware requirement and for speeding

up the calculations.


